Impact of Sulfur Oxides on Mercury Capture by Activated Carbons # Albert A. Presto and Evan J. Granite CMU and NETL DOE/NETL 2007 Mercury Control Conference Pittsburgh, PA December 12, 2007 **National Energy Technology Laboratory** # Challenge Power plants with high concentrations of sulfur oxides show decreased mercury capture efficiency by activated carbon injection Sulfur inhibition of mercury capture is a key technical hurdle to meeting CAMR # Sulfur Oxides (SO_X) in Flue Gas - Coal S oxidized in the furnace primarily to sulfur dioxide (SO₂), with small amounts of sulfur trioxide (SO₃) - SO₂ concentrations range from hundreds of ppm to over 1,000 ppm and SO₃ concentrations are generally 0 30 ppm - SO₃ (ppm levels) is injected into the flue gas as a conditioning agent to improve ESP performance - SO₃ can form from the oxidation of SO₂ across SCR catalysts # **High - SO_X Mercury Capture Examples** #### AEP Conesville - −High-sulfur coal, ~ 30 ppm SO₃ in flue gas - Maximum mercury capture: 31% (Darco E-12 at 12 lb/MMacf) #### Mississippi Power Plant Daniel - -6 ppm SO₃ reduced native mercury capture by 40% and effectiveness of ACI (Darco Hg at 10 lb / MMacf) by 25 – 35% - Other utilities see same inhibiting effect of SO₃ - Laboratory results at EERC - Adding 1600 ppm SO₂ to simulated flue gas (with NO₂ present) caused previously captured Hg²⁺ to desorb from carbon # Possible Mechanisms for SO_x Effect - Competitive adsorption between Hg and SO_x - -SO₂ and SO₃ compete with Hg for Lewis base sites on the carbon surface - SO_x capture could be favored kinetically & thermodynamically - SO₂ has a strong binding energy (~80 kJ mol⁻¹) to activated carbon - Concentrations of SO₂ (100s >1000 ppm) and SO₃ (0 10s ppm) are much greater than the concentration of Hg (~1 ppb) - Activated carbon catalyzes formation of S(VI) - $SO_2 + H_2O + \frac{1}{2}O_2 \rightarrow H_2SO_4$ - Oxygen source can either be flue gas $(O_{2(g)})$ or surface-bound oxygen - Activated carbon is a catalyst to oxidize SO₂ - H_2SO_4 has low volatility ($P_{VAP} = 1 \text{ torr at } 300^{\circ} \text{ F}$) - NO₂ or another electron sink may be required to have a high conversion to sulfate # Possible Mechanisms for SO_X Effect - Competitive adsorption between Hg & SO_x, continued - -SO₃ adsorbs to activated carbon - \bullet SO₃ + H₂O \rightarrow H₂SO₄ - SO₃ can also react with surface oxygen to form H₂SO₄ - AC catalysts for H₂SO₄ are self-poisoned by SO₃ - Activated carbon catalyzes formation of flue gas halides - $-SO_2 + Cl_2 \rightarrow SO_2Cl_2$ - Reaction can remove surface-bound halogens - Analogous reactions for NO and CO # **Typical Experimental Method** - Test activated carbons (Darco FGD and Hg-LH) in a packed-bed reactor - Realistic Hg concentration: 9.3 μg Nm⁻³ - Temperature: 300° F - 200 mg activated carbon - Expose carbons to simulated flue gas (SFG) - − 5.3% O₂, 12.5% CO₂, 0 − 1.5% H₂O, 500 ppm NO, 50 ppm HCl - Vary SO₂ concentration from 0 1870 ppm; wet and dry SFG - Vary SO₃ concentration from 0 100 ppm; dry SFG only - 6 hour exposure time - Analyze exposed carbons for mercury content (μg/g) and sulfur content via ICP-AES - Monitor gas-phase species with mass spectrometer (MS) # **Experimental Method** **FLUE GAS IN** ### **Results: Hg Capture** ## Hg capture is independent of SO₂ concentration #### **Results: S Content** - Initial S content of AC - -0.7 1.3% - Hg-LH captures more sulfur than FGD - Hg-LH is superior for Hg capture, and SO₂ adsorbs to the same sites as Hg - More sulfur is captured when water is present in the SFG - XPS data show that sulfur exists as sulfate on the AC surface # **Results: Hg Competition with SO_x** #### SO₃-free experiments - −Hg content is independent of SO₂ concentration (0 1870 ppm) in the SFG - -Sulfur exists as sulfate on the AC surface - -Water vapor (1.0 − 1.5%) reduces Hg capture by ~30% - -Darco FGD captured more Hg than Darco Hg-LH - During tests of ACI, brominated carbons are typically superior to unpromoted carbons - May result from excellent gas-solid contact in the packed bed, but poor contact in flight # **Results: Hg Competition with SO_x** - Experiments using SO₃ (20 100 ppm) - -Two routes of SO₃ exposure - Vary concentration in the SFG from 20 100 ppm - Pre-expose AC to 50 ppm SO₃ for 1 hour - -Adding SO₃ gave higher S content than SO₂ alone - 1870 ppm SO_2 and $Hg-LH \rightarrow 2.5\% S (dry SFG)$ - 20 ppm SO₃ and Hg-LH \rightarrow 3% S - -SO₃ reduced the final mercury content - 20 ppm SO₃ reduced Hg by 80% - Higher concentrations of SO₃ lead to lower Hg content - Both methods of SO₃ exposure reduce Hg content evidence that SO₃ is favored both kinetically and thermodynamically # Method of Hg Capture Inhibition: Mass Spectrometer Scans - $SO_2 = 1870 \text{ ppm}$ - MS data show no evidence of flue gas halides - Does not rule out formation of halides - Easily hydrolyzed - Perhaps below detection limit? - Concentrations above and below bed are constant Mercury capture inhibition because of flue gas halide formation is unlikely # Method of Hg Capture Inhibition: Competitive Adsorption - Does the data show a contradiction? - -SO₂ in SFG has no effect on Hg capture - -SO₃ in SFG greatly reduces Hg content - -Both SO₂ and SO₃ increased the sulfur content of the AC - If Hg and SO_x compete for the same sites on the AC surface, then the sulfur content is the important variable # Method of Hg Capture Inhibition: Competitive Adsorption # Method of Hg Capture Inhibition: Competitive Adsorption - Hg content decreases as S content increases - –Almost no Hg capture for S content > 6% - H₂SO₄-FGD (10.6% S) captured almost no mercury - Strong evidence for competitive adsorption - SO₃ appears to have a stronger effect than SO₂ for a given S content - May result from physically-bound SO₂ that does not inhibit Hg capture # On-Line Mercury Breakthrough Experiments - PS Analytical Sir Galahad CEM used to verify that sulfur inhibits initial mercury capture - -Prior experiments assume capacity reflects in-flight capture - SFG composition: 10 12 μ g Hg/Nm³, 5.3% O₂, 12.5% CO₂, 500 ppm SO₂, 50 ppm HCI , balance N₂ - -NO_(gas) omitted because it interfered with Hg detection - Three carbons tested - -Raw Darco Hg-LH (0.7% S) - -Hg-LH exposed to 100 ppm SO₃ for 2 hours (8.4% S) - -H₂SO₄-FGD (10.6% S) ## **Mercury Breakthrough Data** # **Results: Mercury Breakthrough** - Mercury capacity and time to 100% breakthrough decreased as S increased - -Raw Hg-LH - Captured 125 μg g⁻¹ - 10% breakthrough after 3 hrs - -SO₃-exposed Hg-LH - Captured 8.4 μg g⁻¹ - 55% initial breakthrough - 100% breakthrough after 3.5 hrs - -H₂SO₄-FGD - Captured <0.5 μg g⁻¹ - >80% initial breakthrough - 100% breakthrough after 1 hr # **Results: Mercury Oxidation** - All samples oxidized Hg⁰ to Hg²⁺ - At 100% breakthrough - -SO₃-exposed Hg-LH oxidized 60% of inlet Hg⁰ - -H₂SO₄-FGD oxidized 30% of inlet Hg⁰ - Previous research indicated that Hg oxidation requires surface-bound Hg - Mercury oxidation at 100% breakthrough may indicate multiple active sites for mercury interaction # **Multiple Hg Sites** - SO₂ forms bonds to carbon surface with energy of adsorption <50 kJ mol⁻¹ and >80 kJ mol⁻¹ - SO₂ and Hg compete for binding sites - By analogy, we can generalize - -Sites with high binding energy for capturing Hg - -Catalytic sites with low binding energy for Hg - Mercury-surface binding energy dependent on specific surface functional groups - -Binding energies decrease in series for lactone > carbonyl > phenol > carboxyl ## Multiple Hg Sites: Hypothesis - High binding energy sites are occupied first - Mercury is strongly bound - Responsible for mercury capacity - Catalytic sites (low binding energy) - Allow mercury to easily adsorb and desorb - -Mercury desorbs as Hg²⁺ - SO₃ follows a similar path - Binds to high binding energy sites first - Reduces Hg capacity - Binds to catalytic sites as high energy sites become filled - Less oxidation across H₂SO₄-FGD bed - High enough S(VI) loadings could render activated carbon useless as either a sorbent or a catalyst #### **Conclusions** - Hg capture is inhibited by competitive adsorption with SO_x species - Hg capture is independent of SO₂ concentration (0 1870 ppm) and is reduced by SO₃ (20 100 ppm) - S content is a more important variable than the gasphase SO_x concentration - Hg content decreases as S content increases - Sulfur on the activated carbon exists primarily as sulfate, which competes with Hg for binding sites - There is no evidence of persistent flue gas halide formation #### **Conclusions** Increasing S content reduces mercury content after 6 hrs exposure and mercury capture efficiency on shorter timescale - There is evidence for multiple mercury binding sites on the carbon surface - -High energy sites capture mercury - Catalytic low energy sites ## **Implications for Future Work** - Common chemical alterations (i.e., bromination) may not overcome SO_x impact on Hg capture - Bromination makes Hg-accepting sites more reactive, and therefore makes the AC more reactive towards SO_x #### **Potential Solutions** - Co-injection of basic sorbents - Sulfur removal upstream of ACI - ACI upstream of SO₃ flue gas conditioning - Alternative flue gas conditioning agents - Reformulated SCR Catalysts - Challenge: Maintain Hg capture efficiency similar to low-S flue gas # **Interesting Notes** #### S⁶⁺ Inhibits Hg Flue Gas Capture by Carbons • S⁶⁺: SO_{3(gas)}, Sulfate_(surface), and H₂SO_{4(surface)} However -- - Sulfuric-Acid Carbons Remove Hg from Hydrocarbon Liquids and Nitrogen Gas Streams - Sulfuric Acid Scrubbers for Hg Capture from Smelter Gases – Mercuric Sulfate Precipitates Out - Mercury Sulfates Previously Proposed as End Product on Activated Carbons - Surface Oxygen Tied up by SO₃, Reduce Capacity ### Acknowledgments - ORISE - Tom Feeley, DOE IEP Program - John Baltrus (XPS) - Robert Thompson (Hg and S analysis) - Andrew Karash (CEM) - Henry Pennline (Suggestions) - Sharon Sjostrom (Excellent Work on SO₃) Portions of this work were published in Environmental Science & Technology and Industrial & Engineering Chemistry Research